ORIGINAL ARTICLE Making sense of the relationships between *N*e, *N*b and *N*c towards defining conservation thresholds in Atlantic salmon (*Salmo salar*)

A-L Ferchaud¹, C Perrier^{1,2}, J April³, C Hernandez¹, M Dionne³ and L Bernatchez¹

Effective population size over a generation (*N*e) or over a reproductive cycle (*N*b) and the adult census size (*N*c) are important parameters in both conservation and evolutionary biology. *N*e provides information regarding the rate of loss of genetic diversity and can be tracked back in time to infer demographic history of populations, whereas *N*b may often be more easily quantified than *N*c for short-term abundance monitoring. In this study, we propose (1) an empirical context to Waples *et al.* (2014) who introduced a correction to bias due to overlapping generations, and (2) a mathematical relationship between *N*e and *N*b for direct application in Atlantic salmon populations in Québec, Canada. To achieve this, we investigate the relationships between *N*e, *N*b and *N*c in 10 Atlantic salmon populations, Canada, for which we genotyped 100 randomly sampled young-of-the year individuals for 5 consecutive years. The results show a positive correlation between *Ne*, *N*b and *N*c, suggesting that *N*b is an indicative parameter for tracking effective population size and abundance of Atlantic salmon. However, our model allows predicting *N*c from *N*b values at 27% that can be partly explained by high variance in *Nb*/*N*c both among populations (37%) and among years (19%). This result illustrates the need for thorough calibration of *Nb*/*N*c before using *N*b in monitoring programs, as well as a full understanding of the limits of such an approach. Finally, we discuss the importance of these results for the management of wild populations.

Heredity (2016) 117, 268–278; doi:10.1038/hdy.2016.62; published online 17 August 2016

INTRODUCTION

In many ecological and evolutionary research contexts, two important variables to be estimated in natural populations are the effective population size (over a generation (Ne) or over a reproductive cycle (Nb or effective number of breeders)) and the adult census size (Nc) (Frankham, 1995; Waples, 2005; Waples et al., 2014). In conservation biology, Ne is important chiefly because it determines the rate of loss of genetic variability and the rate of increase in inbreeding in a population. Ne is defined as the size of an ideal Wright-Fisher population exhibiting the same amount of genetic drift and inbreeding as the population under consideration (Wright, 1931). Ne may be complicated to estimate in most populations because of age structure, generation overlap and iteroparity (Waples et al., 2014). Nb is a concept derived from Ne that refers to the effective number of breeders during a single breeding event (Waples, 1989). The two measures are directly connected because Nb times the generation time approximates Ne (Waples, 1989). For Nb, only one season of data collection is needed. This parameter is thus generally more easily quantifiable than Ne as it can be inferred from a single cohort (for taxa with easy distinguishable cohorts), and might be a more accessible parameter for managers dealing with yearly conservation decisions (Waples, 2005; Luikart et al., 2010; Tallmon et al., 2010). Nc, the adult census population size, is generally defined as the total number of potential (sexually mature) breeders that can sometimes be assessed by directly counting individuals. However, this task is often problematic when *Nc* is large or because detecting all individuals is difficult and we thus often must estimate *Nc*. Therefore, estimates of *Nb* from genetic methods would be useful for tracking population trends if *Nb* reflects the number of adults in a population (that is, if a positive correlation is observed between *Nc* and *Nb*). In this case, *Nb* estimates would provide a complementary metric or could potentially be used in the place of abundance monitoring (Tallmon *et al.*, 2010).

Knowledge of the relative magnitudes of these three parameters (*Ne*, *Nb* and *Nc*), as expressed by the ratios *Ne/Nc* and *Nb/Nc*, is important for disentangling the relative risks that demographic, environmental and genetic factors might pose for population persistence in the short term (Frankham, 1995; Palstra and Ruzzante, 2008). Expressed simply, for a given *Ne*, a population with a small *Ne* relative to *Nc* (that is, small *Ne/Nc* ratio) will lose gene diversity more quickly than an equal-sized population with a greater *Ne/Nc* ratio. Factors that can maximize this ratio are (1) a maximum number of breeders in each subsequent generation (or year), (2) more equal family sizes, (3) more equal sex ratios of breeders and (4) a reduced fluctuation in population size. Temporal fluctuations in effective size and the *Ne/Nc* ratio are not uncommon in natural populations and can be larger than differences between populations (see, for example, Miller and

E-mail: annelaureferchaud@gmail.com

¹Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada; ²Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175 CNRS), Montpellier, France and ³Direction de la Faune Aquatique, Ministère des Forêts, de la Faune et des Parcs du Québec, Québec, Canada

Correspondence: Dr A-L Ferchaud, Département de Biologie, Laboratoire du Dr Louis Bernatchez, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène Marchand, 1030 rue de la Medecine, Québec City, Québec G1V 0A6, Canada.

Received 5 November 2015; revised 23 June 2016; accepted 29 June 2016; published online 17 August 2016

269

Kapuscinski, 1997; Heath *et al.*, 2002, Waples, 2002, Shrimpton and Heath, 2003; Fraser *et al.*, 2007). Several studies have suggested that no simple relationship between *Ne* and *Nc* may exist, either because of habitat factors or because of population expansion and contraction (Ardren and Kapuscinski, 2003; Watts *et al.*, 2007; Fraser *et al.*, 2007; Belmar-Lucero *et al.*, 2012, and see review in Palstra and Fraser, 2012). Although these authors argued that more empirical studies are needed, they gave recommendations to accurately approximate such a relationship with a particular emphasis to better report the uncertainties in variables (Palstra and Fraser, 2012).

Genetic methods often represent the only feasible way to estimate effective sizes (Nb and Ne). The so-called temporal methods-which use genetic data in two or more temporally spaced samples taken from the same population (Waples, 1989) —exploit the temporal changes in allele frequencies and are in general more accurate and robust than other genetic methods. However, collecting temporal data separated by at least one generation could be expensive, especially for long-lived species that have large generation intervals and are usually more of conservation concern. Furthermore, such species usually have overlapping generations and a sampling interval much larger than a generation is necessary to yield accurate Ne estimates. The most widely used single-sample method calculates Ne from linkage disequilibrium (LD) among loci that are unliked (Waples and Do, 2008). The method relies on the fact that in a system where gametes are distributed at random among a small number of zygotes, there will be departures from expected genotype and gametic frequencies, both of which can be used to estimate Ne. In the case of age-structured populations, genetic estimates using the LD methods are strongly affected by both Ne per generation and Nb per breeding season. Samples from single cohort are the most amenable to quantitative bias adjustments resulting from overlapping generations. In this way, Waples et al. (2014) showed that single-cohort samples can be used to estimate Ne with little bias. They proposed formulas to adjust genetic estimates of effective size (Nb and Ne) to correct bias because of age structure using two or three simple life-history traits.

The Atlantic salmon (Salmo salar, L.) is a well-known iteroparous species with overlapping generations and has a complex life history that includes spawning, juvenile rearing in rivers and extensive feeding migrations on the high seas. As a result, Atlantic salmon goes through several distinct phases that can be identified by specific changes in behavior, physiology and habitat requirements. It is an anadromous fish, typically spending 2-3 years in fresh water, migrating to the ocean where it also spends 2-3 years and then returning to its natal river to spawn. The abundance (Nc) of Atlantic salmon has been declining worldwide over the past decades (Friedland et al., 2003; Chaput, 2012; Dionne and Cauchon, 2014). This decline has been attributed to several causes including most ocean productivity decrease because of climate change (Mills, 2013), commercial fisheries (Friedland et al., 2003) as well as habitat disconnection and deterioration (Hall et al., 2012; Nieland et al., 2015). As an indirect consequence of the drop of Nc, Nb and Ne may also decrease, potentially resulting in increased inbreeding depression, loss of local diversity and of evolutionary potential in small populations. Although international management plans have been deployed to mitigate this worldwide decline (that is, cessation of commercial fishing, although with few exceptions), populations trends are mostly not reversing (Hermansen et al., 2015). Meanwhile, based on descriptors of population health, finetuned management and conservation actions have been undertaken at the population level (Parrish et al., 1998; Limburg and Waldman, 2009). In this context, monitoring trends in Ne, Nb and Nc and understanding the links among these parameters may help to refine Atlantic salmon population health indices and ultimately conserve more adequately the genetic integrity of threatened populations. Monitoring these parameters and especially extrapolating a *Nc* value from a *Nb* or *Ne* estimate could also possibly replace direct abundance monitoring in rivers where such classic operation can be logistically challenging.

The main goal of this study is to empirically explore the relationship between the three estimates, Nc, Nb and Ne, taking into consideration different demographic factors and temporal fluctuations (sampling over a generation time) in 10 populations of Atlantic salmon. We took advantage of a large data set partly published in Perrier et al. (2016). To the data set of Perriers et al. (2016), we added one population and two additional years on all populations, thus comprising an entire generation time (that is, 5 years; Dionne and Cauchon, 2014). We genotyped ~ 5000 1-year-old Atlantic salmon at 15 highly variable microsatellite markers in 10 different populations for 5 consecutive years (~100 individuals per river and per year). Being an iteroparous and anadromous species, the Atlantic salmon appears a suitable species to propose an empirical context to Waples et al. (2014), who introduced a correction to bias because of overlapping generations on simulated data. Although fastidious, counts of spawn adult breeders returning to their natal river can be done to get an estimate of Nc. Atlantic salmon has also been well studied and described in terms of variation among rivers and several key life-history traits. In this context, the large data set used in this study offers the opportunity to propose an empirical relationship between Ne and Nb for direct application in Atlantic salmon populations in Québec, Canada. Finally, we also aim to test how much Nb reflects an Nc estimate by examining the correlation between these two measures.

MATERIALS AND METHODS

Study sites, sampling and estimates of census size (Nc)

A total of 4730 1-year-old parr (juveniles) were sampled using electrofishing in 10 rivers during summer in 2010, 2011, 2012, 2013 and 2014 corresponding to the breeding years 2008, 2009, 2010, 2011 and 2012 (Table 1 and Figure 1; Perrier *et al.*, 2016). These rivers were chosen according to the (1) representation of the different regional genetic groups identified in the studied area (Dionne *et al.*, 2008; Moore *et al.*, 2014), (2) variation in census size estimates, (3) levels of stocking and (4) logistical feasibility of sampling. Individuals were sampled with respect to the guidelines of the Canadian Council on animal care and details for the sampling within river are provided in Perrier *et al.* (2016). Whole fish were stored immediately in 50 ml tubes with 95% ethanol. The median number of juveniles effectively genotyped per river and per year was 98 individuals (Table 1).

The number of anadromous adults returning to a river for a given year has been assessed for each river allowing an estimate of *N*c for each sample. Basically, the number of spawners for each river is estimated using migratory pass, count barriers or snorkeling methods that are considered to provide the most reliable evaluation for a given river (Fontaine and Caron, 1999; see Perrier *et al.*, 2016 for details). Such estimates for the Laval River were not available for the corresponding 5 years. Instead, according to the standard protocol of the Ministère des Forêts, de la Faune et des Parcs du Québec (Fontaine and Caron, 1999), data for the Laval River were estimated assuming that interannual variations are approximately the same as those observed in the other rivers of the region. The census size within a river across a generation (hereafter named Nc_{pool}) was obtained by summing *N*c over years × (α /number of sampled years), with α = age at maturity (=3.4 years).

Genotyping, genetic diversity and differentiation

All methodological steps from DNA extraction to genotyping through amplifications at 15 microsatellites are detailed in Perrier *et al.* (2016). Potential presence of null alleles and large allelic dropout were tested using the software MICROCHECKER (Van Oosterhout *et al.*, 2004). $F_{\rm is}$, $H_{\rm o}$ and $H_{\rm e}$ for each marker

270

and river were estimated using FSTAT 2.9.3 (Goudet, 1995) and were mainly used to ensure the absence of technical problems that may have led to abnormal heterozygotes excess or deficit. Using Genepop v 4.2.2 (Rousset,

Table 1 River name, sample abbreviation, breeding year, sample size and counted number of anadromous breeders (*N*c) for Atlantic salmon populations from Québec

River	Sample abbreviation	Breeding year	Sample size	Nc
Laval	LAV08	2008	60	103
	LAV09	2009	95	131
	LAV10	2010	95	55
	LAV11	2011	91	34
	LAV12	2012	94	35
Grand-Pabos	GPA08	2008	64	150
	GPA09	2009	100	103
	GPA10	2010	97	284
	GPA11	2011	100	289
	GPA12	2012	98	137
Petite-Cascapedia	PCA08	2008	98	285
	PCA09	2009	94	245
	PCA10	2010	100	338
	PCA11	2011	100	384
	PCA12	2012	94	130
Trinite	TRI08	2008	98	838
	TRI09	2009	100	420
	TRI10	2010	100	763
	TRI11	2011	100	1060
	TRI12	2012	94	484
Sainte-Marguerite	SMA08	2008	96	743
0	SMA09	2009	100	618
	SMA10	2010	99	744
	SMA11	2011	100	1400
	SMA12	2012	95	287
Malbaie	MAL 08	2008	43	931
mandaro	MAL09	2009	99	625
	MAL10	2010	100	590
	MAL11	2011	100	687
	MAL12	2012	99	.340
Godbout	GODO8	2008	99	615
ababbat	GOD09	2009	100	767
	GOD10	2010	97	842
	GOD11	2010	100	1160
	GOD12	2012	98	821
Aux-Rochers	ROCOR	2012	54	615
Aux Roeners	R0C09	2009	99	615
	ROC10	2005	97	1060
	ROC11	2010	100	1381
	R0C12	2012	97	850
Saint-lean	S IEOR	2012	87	947
Saint-Jean	S IEOQ	2000	100	706
	SIE10	2005	100	017
	SIE11	2010	100	770
	SJE12	2011	100	617
Matana	SJE12 MATOR	2012	90	1077
Watane	MATOO	2008	92	1555
	MAT10	2009	99	1400
	WAT10	2010	100	1498
	WAT10	2011	100	2103
A	WAT12	2012	97	1362
Average			98	622
winimum			43	34
waximum			100	2103

2008), we estimated F_{st} between rivers to assess the potential structure among rivers and F_{is} for each river. The stability across years of the genetic structure between rivers was tested computing Pearson's correlation coefficient between F_{st} estimates for each pairwise comparison year. Moreover, an analysis of molecular variance conducted with rivers nested within year was also performed with Arlequin version 3.5.1.2 (Excoffier and Lischer, 2010). The relationship between F_{is} values and Nb_{LDadj}/Nc ratio was subsequently tested by a linear regression model in order to test for a putative within-river Wahlund or Allendorf–Phelps effects (Allendorf and Phelps, 1981; Waples, 1998; Castric *et al.*, 2002). Migrants across populations were identified using Geneclass2 (Piry *et al.*, 2004) and then removed for subsequent analyses.

Estimates of effective number of breeders (*Nb*), effective population size (*Ne*) and their ratio to census size (*Nc*)

Our sampling design allowed assessing (1) Nb estimates from each consecutive cohort (from 2008 to 2012) of the 10 rivers and (2) Ne estimates over a generation by analyzing consecutive cohorts from a same river jointly. We estimated Nb for each of the 50 samples using two different singlesample estimator methods. The first was the Sibship assignment method (Wang, 2009) that uses sibship frequencies estimated from randomly sampled pairs of individuals as being sibs sharing one or two parents. The program Colony2 (Wang, 2009) was run under the full likelihood model to estimate Nbsib by considering polygamous breeding systems for both sexes (Garant et al., 2001; Richard et al., 2013), and no prior information on candidate parents or sibship sizes. Second, we estimated Nb_{LD} by applying the LD (Waples and Do, 2008) method that uses the unbiased estimators of Burrow's Δ (Weir, 1979) to test for nonrandom associations between unlinked loci. For this, we used the program NeEstimator 2 (Do et al., 2014) that implements an improved version of the LDNe algorithm (Waples and Do, 2008) to better deal with missing data (Peel et al., 2013). We used a threshold of 0.05 as the lowest allele frequency that gives the least biased results according to Waples and Do (2010). We then used the method developed by Waples et al. (2014) that corrects bias due to overlapping generations using three simple life-history traits, and the following equation:

$$Nb_{LDadj} = \frac{Nb_{LD}}{(0.991 - 0.206 \times \log{(Al)} + 0.256 \times \log{(\alpha)} + 0.137 \times CVf)}$$
(1)

Where Al, α and CVf correspond to adult life span, age at maturity and variation in age-specific fecundity, respectively. We used Al=2, α =3.4 and CVf=0.88 (these parameters were computed using the data published in Perrier *et al.*, 2014 and according to Dionne and Cauchon, 2014). Then, in order to obtain a *Ne* estimate for each river, we used the following equation from Waples *et al.* (2014) Table 3:

$$Ne_{Adj} = \frac{Nb_{LDadj}}{(0.833 + 0.637 \times Log(Al) - 0.793 \times Log(\alpha) - 0.423 \times CVf)}$$
(2)

As these estimates (from each year and river) reflect temporal (across years) and demographic (across rivers) variation, they were subsequently used for modeling the prediction of *Ne* estimate from *Nb* estimate (see below). For each river, the ratio of number of breeders to census size was assessed dividing Ne_{LDadi} by the Nc values within each river (Waples, 2005).

Ne for each river was also estimated pooling all consecutive cohorts into a single analysis by river using the two methods previously employed. First, the program Colony2 (Wang, 2009) was run with the same setting used for Nb_{sib} estimates to get Ne estimates from pooled temporal samples (hereafter named NepoolSib). Second, the LDNe approach was performed to estimate the Nepool. Pearson's correlation was computed to test the congruence between Nb_{LDadj} and Nbsib estimates and between Nepool and NepoolSib estimates, as well as between the mean of NeAdj within a river and the corresponding Nepool. For each river, the ratio of effective size to census size was assessed dividing Nepool by the Ncpool values (Waples, 2005). As the ratios Nb/Nc and Ne/Nc could differ among populations and hence reflect differences in sex ratios, nonrandom mating, variance in individual reproductive success and family size and fluctuating Nc over generations, we tested whether Nb_{LDadj}/Nc varied among rivers and among years. The results of this analysis directly reflect the variation of NeAdi/Nc as NeAdi was directly estimated from NbLDadi. We used the function LMER from the R package LME4 to fit linear mixed effects models accounting

Ne, Nb and Nc in the scope of Atlantic salmon conservation A-L Ferchaud et al

Figure 1 Boxplots displaying the variation in census size (Nc), adjusted effective number of breeders (Nb_{LDadj}) and the ratio of the adjusted effective number of breeders over census size (Nb_{LDadj}/Nc) across 5 years within each river. Rivers are ordered according to their census size.

for the effects of river and breeding year on Nb_{LDadj}/Nc, considered as random variables. The function BOXCOC from the library MASS in R (Venables and Ripley, 2002) was used to determine the best normalization transformation to apply to Nb_{LDadj}/Nc. Nb_{LDadj}/Nc values were thereafter log transformed. The χ^2 tests were used to compare the log likelihood of the models built using only one variable with models including two variables. From the best models, we inferred the variance of log (Nb_{LDadj}/Nc) attributable to the river and to the year. Finally, the relationship between log(Ne_{Adj}/Nc) and Nc on one hand and between log(Nb_{LDadj}) and Nc on the other hand were explored using Pearson's correlation test.

Predicting Ne and Nc from Nb

Taking into account the variability across rivers and years, we used a hierarchical linear mixed effects model to predict (1) Ne_{Adj} from Nb_{LDadj} and (2) Nc from Nb_{LDadj} . This model includes the Nb_{Adj} and Ne_{Adj} variability (95% confidence interval) within each river by an extension of bootstrapped type II regression model with random effect of 1000 iterations (Sokal and Rohlf, 1995; Legendre and Legendre, 1998) using a custom R-script. Linear model were run using the function lme() of the NLME R-cran package (Pinheiro *et al.*, 2015). The function BOXCOC from the library MASS in R (Venables and Ripley, 2002) was used to determine the best normalization transformation to apply to Ne_{Adj} , Nb_{LDadj} and Nc. Ne_{Adj} , Nb_{LDadj} and Nc values were thereafter log transformed.

RESULTS

Genetic diversity within and among rivers

A total of 4730 juveniles were genotyped for the 15 microsatellites with an average of 3.03% of missing genotypes. The median number of juveniles genotyped per river and per year was 98 and ranged from 43 to 100 (Table 1). The mean number of alleles per locus was 27 and ranged from 10 to 47, whereas the number of alleles per locus per population varied from 4 to 31 with an average of 15. MICROCHECKER analysis was performed that confirmed the absence of null alleles and allele dropout. H_e estimates per population per year varied from 0.79 to 0.86 with an average of 0.81 (Supplementary Material 1). Average F_{is} per population per year ranged from -0.02 to 0.04 with an average of 0.01 (Supplementary Material 1), and no significant relationship was found between F_{is} and NbAdj/Nc (r^2 Adj = 0.016, P = 0.19, F = 1.854), confirming the absence of significant within-river Wahlund or Allendorf-Phelps effects. Fst among rivers within a given year were significant (P<0.001) and ranged from 0.005 (PCA10-MAT10) to 0.063 (LAV12-GOD12) with an average of 0.0288 (Supplementary Material 2). The genetic structure between rivers was stable across years as t Pearson's correlation coefficient between F_{st} estimates between years was highly significant (P < 2.2e - 16) for all comparisons and ranged between 0.83 (2008-2012) and 0.96 (2009-2010)

271

(Supplementary Material 2). The hierarchical analysis of molecular variance conducted with rivers nested within year revealed that the genetic variation is 2.75 times as important among rivers within a year as among years.

Estimates of census size (Nc), effective number of breeders (Nb), effective population size (Ne) and their ratio to census size

Census size varied from 34 (LAV11) to 2103 (MAT11), with an average of 691 and a median value of 622 (Table 1 and Figure 1). Average *Nc* values per river across the 5 years ranged from 72 (LAV) to 1699 (MAT), with an average of 691 and a median of 736.

Nb_{sib} estimates varied from 46 (LAV10) to 186 (SMA12), with an average of 127 and a median of 139 (Table 2). Nb_{LD} estimates varied from 34 (LAV10) to 815 (TRI08) with an average of 269, and NbLDadi estimates varied from 29 (LAV10) to 688 (TRI08), with an average of 227 and a median of 199. The 95% confidence intervals ranged from ±25 (LAV10) to infinite (MAT08, TRI08 and TRI12). Over the 50 samples, we obtained a single 'infinite' value, for MAT08, for which the lower limit of the confidence interval was 521 (Table 2). Overall, the mean coefficient of variation across rivers was 0.41 and varied from 0.24 (MAT) to 0.61 (GOD). Overall, Nb_{LDadi} and Nb_{sib} were positively correlated ($r^2 = 0.70$, P-value = 2.33e - 08). Nb_{LDadi}/Nc varied from 0.12 (MAL09) to 2.17 (PCA12). Average Nb_{LDadi}/Nc values per river over 5 years ranged from 0.17 (MAT) to 0.89 (LAV), with an average value of 0.50 and a median value of 0.35. The estimations of effective sizes across a generation (Ne) were first assessed from single-cohort samples estimates using the equation of Waples et al. (2014). NeAdi values estimated from NbLDadi varied from 124 (LAV10) to 2976 (TRI08), with an average of 980 and a median value of 863. NeAdi estimates averaged per river varied from 196 (LAV) to 2167 (TRI), with a mean of 984 and a median value of 895. The mean coefficient of variation across rivers for NeAdi was 0.41 and varied from 0.24 (MAT) to 0.61 (GOD). Ne estimates were also obtained by pooling all consecutive cohorts into a single analysis by river. Nepool estimated per river ranged from 132 (LAV) to 643 (MAT), with a mean of 352 and a median value of 375. A significant positive correlation was found between the mean of Ne_{Adj} within a river and the corresponding Ne_{pool} ($r^2 = 0.63$, *P*-value = 0.04). $Ne_{poolSib}$ estimates per river ranged from 246 (LAV) to 646 (MAT), with an average of 496 and a median value of 542. Nepool and NepoolSib were also significantly and positively correlated $(r^2 = 0.89, P$ -value = 0.0006013, Supplementary Material 3). The mean ratio Nepool/ Ncpool was 0.22 and ranged from 0.11 (MAT, GOD and MAL) to 0.54 (LAV) (Table 2).

The LMER model that best predicted log (Nb_{LDadj}/Nc) variation integrated both the effects of the river and that of year (log likelihood = -48.78). Overall, 37% of the variance in log (Nb_{LDadjj}/Nc) was explained by the river and 19% was explained by the year, leaving 44% of the variance unexplained (Table 3). A significant negative correlation was also found between log(Nb_{LDadj}/Nc) and Nc($r^2 = -0.62$, *P*-value = 1.58e - 06), as well as between log(Ne_{Adj}/Nc) and Nc ($r^2 = -0.61$, *P*-value = 3.77e - 06; Figure 2).

Predictions of Ne and Nc from Nb

Because we applied a log transformation on Nc, Nb_{Adj} and Ne_{Adj} variables, the linear model that actually describe our data is:

$$\log (Nc) = b0 + b1 * \log (Nb_{LDadj}) + e$$

where b0 is the intercept, b1 corresponds to the slope and e is the error term.

We convert to raw data by taking the exponential of independent and dependent variables of this model, and thus we get:

$$Nc = \exp(5.75272301) * (Nb_{LDadj} \land 0.08286482), \text{ with a } r^2 \text{adj}$$

= 0.27 and a p-value = 2.98e - 05

Similarly, the equation obtained for the relationship between Ne_{Adj} and Nb_{LDadj} is

$$Ne = \exp(2.9199183) * (Nb_{LDadj} \land 0.7207817)$$
, with a r^2 adj
= 0.99 and a *p*-value = 1.44e - 08.

Here, a quasi-perfect correlation is obviously expected as *Ne* was directly estimated from *Nb* estimates. However, the main point here was to use our empirical data set to propose an empirical equation directly applicable in our system. Figure 3 shows the fit between the observed data and the hierarchical linear model for the relation between *Nb*_{Adj} and *Nc*. The mean correlation between *Nb*_{LDadj} and *Nc* among years within a river is 0.68. For the relationship between *Nb*_{LDadj} and *Nc* among years within river is 0.15.

DISCUSSION

The goal of this study was to empirically explore the relationship between the three parameters, Nc, Nb and Ne, taking into consideration different demography factors (including genetically distinct populations) and temporal fluctuations (sampling 5 consecutive years) in 10 populations of Atlantic salmon. To achieve this, we generated one of the most comprehensive microsatellite data sets generated to date in Atlantic salmon. Our results allow performing a detailed empirical assessment of the mathematical relationship between Ne and Nb developed by Waples et al. (2014). Precise estimates of cohortspecific Nb were quantified across a wide range of population sizes that allowed drawing the relationship with census size (Nc). In the following sections, we first discuss about factors potentially affecting Nb, Ne and their ratio to Nc in comparison with other studies conducted on the same species as well as on other taxa. Then, we consider the reliability of these relationships for wild populations and specifically for Atlantic salmon conservation.

Factors potentially affecting Nb, Ne and their ratios to Nc

In our study, Nb_{LDadj} (from 29 to 696), Ne_{Adj} (from 106 to 2538) and Nc (from 34 to 2103) estimates generally fall within the range of values reported in other northeast Atlantic salmon populations. Nb was estimated at 198 in the Escoumins River (Québec, Canada, Perrier et al., 2014), ranged from 70 to 352 over a 30-year study in the Northeast Brook (Newfounland, Johnstone et al., 2013) and ranged from 42 to 3784 with an average of 1016 among 9 rivers in Newfounland (Palstra et al., 2009). Moreover, when estimating Ne from pooled years, NepoolSib estimates were downwardly biased for large populations in comparison with estimates from the LDNE approach (NepoolAdj). Comparison between NbLD, NbLDadj and Nbsib estimates in our study also strengthens the point that Nbsib is likely downwardly biased because of overlapping generations. A putative explanation that has already been inferred either in Atlantic salmon (Johnstone et al., 2013) or in the threespine stickleback (DeFaveri and Merilä, 2015) is that in large populations, the Sibship method as implemented in Colony2 (Jones and Wang, 2010) would be more sensitive to sample size (that is, a bigger sample size would better reflect the entire Sibship network (Carrea, 2011, but see Wang, 2016). In contrast, NeAdi inferred from each year seems to better reflect the extent of LD within the cohort. Moreover, to overcome the bias due to overlapping generations using the LDNe method (which assumes

272

using the Sibship met	hod (Wang, 2009)							
Sampling abbreviation	Nb_{sib}	Np_{\GammaD}	N b _{LDadj}	Nb _{LDadj} /Nc	Ne _{Adj}	Ne_{sib}	Nepool	Nepool/Ncpool
LAVO8	51 (34–78)	58 (47–73)	49 (40–62)	0.47	211 (172–268)	246 (205 –299)	132 (121–145)	0.54
LAV09	81 (59–114)	50 (43–57)	42 (36–48)	0.32	181 (158–210)			
LAV10	47 (32–72)	34 (30–38)	29 (25–32)	0.52	124 (110–139)			
LAV11	72 (50–104)	78 (66–96)	66 (55–81)	1.94	286 (239–349)			
LAV12	69 (26–62)	49 (43–57)	41 (36–48)	1.19	180 (157–208)			
GPA08	77 (54–110)	112 (82–169)	95 (69–142)	0.63	409 (299–617)	304 (258 –360)	167 (152–184)	0.26
GPA09	66 (47–95)	48 (42–55)	40 (35-46)	0.39	173 (152–199)			
GPA10	90 (66–124)	75 (64–89)	63 (54–75)	0.22	272 (232–324)			
GPA11	128 (95–174)	218 (158–333)	184 (134–281)	0.64	794 (578–1217)			
GPA12	81 (67–105)	85 (72–102)	72 (61–86)	0.52	311 (264–373)			
PCA08	155 (116–206)	302 (201–565)	255 (170–477)	0.89	1102 (734–2063)	522 (453–599)	391 (339–457)	0.42
PCA09	107(80–142)	172 (130–246)	145 (109–207)	0.59	627 (474–897)			
PCA10	99 (73–135)	148 (116–199)	124 (97–168)	0.37	539 (422–726)			
PCA11	104 (76–141)	159 (124–216)	134 (104–182)	0.35	580 (451–788)			
PCA12	177 (154–208)	335 (213–715)	282 (180–603)	2.17	1222 (777–2608)			
TR108	146 (111–194)	815 (344-Inf)	688 (290-Inf)	0.82	2976 (1256–10 951)	602 (526–683)	469 (395–568)	0.19
TR109	147 (113–191)	453 (266–1312)	382 (224–1107)	0.91	1654 (971–4791)			
TRI10	158 (118–215)	637 (317-10 641)	537 (267–8975)	0.7	2326 (1156–38 844)			
TRI11	155 (114–207)	281 (186–527)	237 (157–444)	0.22	1024 (680–1922)			
TR112	184 (165–214)	782 (346-Inf)	659 (292-Inf)	1.36	2853 (1262–10 951)			
SMA08	143 (109–192)	214 (153–339)	180 (129–286)	0.24	780 (557–1237)	643 (562 –738)	412 (356–483)	0.16
SMA09	154 (116–206)	249 (176–408)	210 (148–344)	0.34	909 (641–1488)			
SMA10	158 (121–208)	343 (219–721)	290 (185–608)	0.39	1253 (801–2632)			
SMA11	151 (116–201)	359 (235–708)	302 (198–598)	0.22	1309 (856–2586)			
SMA12	186 (168–215)	444 (259–1322)	374 (219–1115)	1.3	1621 (946–4826)			
MAL08	84 (55–135)	384 (155–3000)	324 (130–2530)	0.35	1401 (564–10 951)	401 (340-470)	234 (210–262)	0.11
MAL09	95 (69–129)	86 (73–102)	72 (61–86)	0.12	312 (265–373)			
MAL10	107 (80–145)	93 (79–112)	79 (67–94)	0.13	340 (289–407)			
MAL11	145 (109–193)	350 (231–675)	295 (195–570)	0.43	1277 (842–2466)			
MAL12	102 (86–126)	350 (112–180)	295 (94–152)	0.85	1277 (409–658)			
G0D08	96 (72–130)	100 (82–125)	84 (69–106)	0.14	365 (299–457)	562 (493–647)	303 (266–347)	0.11
GOD09	148 (113–197)	465 (260–1727)	392 (219–1457)	0.51	1699 (949–6305)			
GOD10	149 (115–178)	145 (114–195)	123 (96–165)	0.15	530 (416–713)			
G0D11	151 (117–203)	513 (287–1936)	433 (242–1633)	0.37	1872 (1047–7067)			
G0D12	165 (41–88)	573 (275–114 861)	483 (232–96 880)	0.59	2090 (1005–419 296)			

Table 2 Sample abbreviation, Mb_{sib}, Mb_{LD}, Mb_{LDadj}, Mb_{LDadj}/Nc, Ne_{poolAdj} and Ne_{poolAdj}/Nc_{pool} estimated using the LDNe method (Waples and Do, 2008) and Ne_{poolSib} estimated

Table 2 (Continued)								
Sampling abbreviation	Nbsib	Nb _{LD}	Nb _{LDadj}	Nb _{LDadj} /Nc	Ne _{Adj}	Ne _{sib}	Nepool	NepoolNcpool
ROCO8	88 (61–131)	151 (101–279)	127 (85–235)	0.21	551 (368–1018)	493 (428–569)	359 (310–421)	0.12
ROC09	128 (96–172)	189 (145–265)	159 (122–223)	0.26	689 (527–966)			
ROC10	136 (102–182)	236 (167–384)	199 (141–324)	0.19	863 (611–1401)			
ROC11	132 (97–178)	267 (189–438)	225 (159–369)	0.16	976 (688–1599)			
ROC12	183 (162–218)	347 (222–729)	293 (187–615)	0.34	1267 (811–2660)			
SJE08	123 (90–168)	160 (120–234)	135 (101–197)	0.14	585 (436–854)	543 (476–620)	416 (354–497)	0.15
SJE09	131 (98–176)	190 (140–285)	161 (118–240)	0.2	695 (512-1040)			
SJE10	116 (87–156)	213 (153-336)	180 (129–284)	0.2	779 (559–1227)			
SJE11	141 (107–187)	353 (223–767)	298 (188–647)	0.38	1289 (814–2799)			
SJE12	160 (141–189)	206 (152–307)	174 (128–259)	0.28	752 (556–1119)			
MAT08	146 (112–196)	Inf (618–Inf)	Inf (521–Inf)	Inf	Inf (2256–10 951)	646 (571–734)	643 (524–815)	0.11
MAT09	157 (118–208)	238 (170–377)	201 (144–318)	0.13	868 (622–1377)			
MAT10	159 (121–212)	297 (200–539)	250 (169–454)	0.17	1084 (731–1967)			
MAT11	157 (120–213)	422 (251–1154)	356 (212–974)	0.17	1542 (916–4214)			
MAT12	179 (152–198)	335 (220–654)	283 (186–552)	0.21	1224 (804–2387)			
Average	127 (96–164)	269 (173–3153)	227 (146–2659)	0.5	980 (633–11 510)	496 (431–572)	352 (303-418)	0.22
Minimum	47 (26–62)	34 (30–38)	29 (25–32)	0.12	124 (110–139)	246 (205–299)	132 (121–145)	0.11
Maximum	186 (168–218)	815 (618–114 861)	688 (521–96 880)	2.17	2976 (2256–419 296)	646 (571–738)	643 (524–815)	0.54
Values in brackets represent th	le 95% confidence interval.							

discrete generations), we corrected *N*b and *N*e estimates according to Waples *et al.* (2014) using three life-history traits that were identically set for the 10 rivers because river-specific data were not available. These Nb_{LDadj} and Ne_{Adj} estimates could therefore be refined for each river in the future given that adult life span, age at maturity and agespecific fecundity probably differ among rivers. The age at maturity is probably the parameter that varies the most among Atlantic salmon populations and consequently could have the most considerable effect on effective size estimates. However, it is difficult to obtain a good estimate for such a parameter. In particular, this would require knowing the exact proportion of mature male parr (which are early sexually maturing male salmon that are not counted in *N*c estimates) in a population that could also vary among years.

With a mean Nepool/Ncpool ratio of 0.22 across sampled rivers, our results are in agreement with the review of Palstra and Ruzzante (2008) reporting a low median ratio (=0.14) across studies. However, we observed a pronounced variability for Nepool/Ncpool estimates across populations (from 0.11 for the largest population MAT to 0.54 for the smallest population LAV). Consistently, the median Nepool/Ncpool ratio has previously been shown to be highly variable within species (Shrimpton and Heath, 2003; Palstra and Fraser, 2012) and generally larger in small than in large populations, suggesting changes in biological interactions with populations abundance (Frankham, 1995; Palstra and Fraser, 2012). Values of <1 in our populations could probably be attributed to common factors found in the wild and already reported in several studies, such as skewed sex ratios, high variance in reproductive success and fluctuations in population size through time (Nunney, 1993; Vucetich et al., 1997; Hedrick, 2005). The inverse relationship between NeAdi/Nc and Nc found in this study and other previous studies (Pray et al., 1996; Ardren and Kapuscinski, 2003; Araki et al., 2007; Fraser et al., 2007; Watts et al., 2007) could potentially be explained by an increase of the standardized variance in family size as Nc increases, and conversely, that this variance decreases as Nc decreases (Hedrick, 2005). At low abundance, lower variance in reproductive success leads to relatively higher effective size, either per generation (Ne) or per cohort (Nb) (Ardren and Kapuscinski, 2003). Indeed, Palstra and Ruzzante (2008) argue that mechanisms of genetic compensation may counteract reductions of Ne (and hence increase Ne/Nc). Such genetic compensation can be viewed as resulting in a buffering effect against loss of genetic diversity at low Nc. For salmonid fishes, genetic compensation can be reconciled with aspects of their breeding ecology (Fleming, 1996, 1998). Specifically, it is hypothesized to be due to density dependence in competition for spawning territories, competition for mates, redd superimposition or embryo mortality caused by delayed spawning (Ardren and Kapuscinski, 2003). Contrarily, Ne/Nc ratios in large populations are generally lower because there is higher variance in breeding success.

Making sense of the relationships between Nb, Ne and Nc in the context of salmon conservation

Estimating Ne over an entire generation can be challenging, whereas Nb can more easily be quantified from a single-cohort sample

Figure 2 Relationship between $log(Ne_{Adj}/Nc)$ and Nc. Each dot represents a single sample (one population for a specific year) and the line was fitted with a linear regression including the 95% confidence interval (display in gray area Pearson's correlation coefficient and the associated *P*-value are also reported.

Figure 3 Relationship between Nb_{LDadj} and Nc variables including the 95% confidence interval (in gray area). Each dot represents a single sample (one population for a specific year) and curves were fitted based on the coefficients of the hierarchical linear mixed model.

Table 3	Linear mixed	effects mod	els accounting	for the	effects of	the rive	r and c	of the	year or	∩ Nb _{Adi} /	$/N_{\rm C}$
---------	--------------	-------------	----------------	---------	------------	----------	---------	--------	---------	-----------------------	--------------

Explained variable	Models	Log likelihood	The χ ² test P-value	Variance explained by the river	Variance explained by the year
Nb _{Adi} /N _C	Imer (log(Nb_{Adi}/N_{C}) ~ 1+(1 river)+(1 breeding year))	-48.78		0.37	0.19
,	Imer (log(Nb_{Adj}/N_C) ~ 1+(1 river))	- 52.52	0.006		
	lmer (log(Nb_{Adj}/N_C) ~ 1+(1 breeding year))	- 54.55	0.000		

The χ^2 tests were used to compare the models including only the river or the breeding year to the model including both terms.

(Waples, 2005) and be a more practical parameter for managers. Here, we presented the first empirical application to the correction for overlapping generations estimating Nb_{LDadj} and Ne_{Adj} (Waples *et al.*, 2014). Our sampling design incorporated the temporal, environmental and demographic variability and thus allows proposing an accurate prediction for this model. Therefore, for future management of Québec Atlantic salmon populations (or elsewhere in the species range), our results suggest that a single-cohort sample would be enough to get an estimate of *N*b and then an extrapolated estimate of *N*e.

In the present study, Nb/Nc fluctuated temporally; this also corroborates previous studies in Atlantic salmon (see, for example, Palstra et al., 2009; Johnstone et al., 2013; Perrier et al., 2013, 2016). Nb/Nc temporal variation has also been reported in other salmonid species (Heath et al., 2002; Palm et al., 2003). Frankham (1995) and Vucetich et al. (1997) suggested that fluctuation in census size was the largest contributor to the reduction of effective to census size ratios on both theoretical and empirical grounds, whereas Storz et al. (2001) suggested that variance in reproductive success has a pivotal role based on results of paternity analysis. If the former is correct, then genetic monitoring may be an efficient and independent means of estimating abundance of exploited populations of conservation and/or commercial interest (Ovenden et al., 2007; Waples et al., 2008). A significant positive correlation between Nb and Nc has also been reported in several long-term studies (Osborne et al., 2010; Charlier et al., 2012) but not in others (Ardren and Kapuscinski, 2003; Palstra et al., 2009; Berry and Kirkwood, 2010; Serbezov et al., 2012; Duong et al., 2013; Johnstone et al., 2013; Dowling et al., 2014; Whiteley et al., 2015). The positive correlation between Nb and Nc suggests that in the case of Québec Atlantic salmon populations, NbAdi is an indicative parameter for tracking temporal trends within populations and that genetic monitoring can be used for detecting fluctuations in abundance. However, it is noteworthy that our model allows explaining only 27% of the variance in Nc value from NbAdj estimates, and that 73% of the remaining variation could be explained by other factors. As reported in Perrier et al. (2016), most of the variance in NbAdi/Nc was explained by the river rather than year, suggesting that NbAdi/Nc differ among rivers according to their biological characteristics. Such variability in Nb_{Adi}/Nc could be attributed to various biological processes including differences in variance of individual reproductive success and in sex ratio (Crow and Kimura, 1970; Nunney, 1993; Frankham, 1995; Kalinowski and Waples, 2002; Hedrick, 2005). Moreover, estimates of Nc employed in this study correspond to adult run size, ignoring the reproductive potential of individuals that mature without going to the sea. In Atlantic salmon such individuals are primarily males (Klemetsen et al., 2003) and known as mature male parr (Verspoor et al., 2007). It has been recently shown that these mature male parr can contribute importantly to the effective population size via both their reproductive effort and the fact that they are generally maturing asynchronously from females they mate with. Thus, several studies have shown that mature male parr may fertilize relatively large proportions of eggs in the wild, ranging typically from 30 to 60% (Martinez et al., 2000; Saura et al., 2008; Grimardias et al., 2010; Richard et al., 2013). Thus, NeAdi/Nc and NbAdi /Nc reports using Nc inferred from anadromous run are expected to be upwardly biased as Nc does not include mature male parr (Perrier et al., 2014). This bias could be especially problematic because anadromous adults often contain fewer males than females (Dalley et al., 1983; Myers and Hutchings, 1987), potentially resulting in a high degree of polygamy that may cause more pronounced reductions in NeAdi/Nc ratios. Hence, the efficacy of Ne as a predictor of abundance may depend on

intrinsic population characteristics of the species, and in particular the proportion of mature male parr and skewed sex ratio.

CONCLUSION

Here, we showed the utility of using a comprehensive empirical data set to obtain robust census and effective population or breeder sizes and depict demographic and temporal fluctuations. Nb and Ne estimates from the LDNe method and the Sibship method were congruent overall. The results show a significant correlation between Nb and Nc and between Nb and Ne, suggesting that in the case of Atlantic salmon populations, Nb offers potential to be used for tracking population abundance and effective population size. Moreover, based on Waples et al. (2014) we proposed an empirical relationship between Ne and Nb for a direct application in the conservation of the Atlantic salmon. However, our model allows explaining only 27% of the variation in Nc from Nb estimates, indicating that a large proportion of the variance in Nb/Nc exists both among populations (37%) and among years for the same population (19%). This result illustrates the need for a thorough calibration of Nb/Nc before using Nb in monitoring programs, as well as a full awareness of the limits of such approach.

DATA ACCESSIBILITY

Empirical data (genepop file) available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.jh146.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank all biologists and technicians of the Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP) for their implication in the project and their field assistance. We are grateful to E Normandeau for his help while analyzing the data. We are also grateful to the associated editor and three anonymous reviewers for their constructive comments on a previous version of this manuscript. This research was funded by the MFFP and the Canadian Research Chair in Genomics and Conservation of Aquatic Resources.

AUTHOR CONTRIBUTIONS

LB and MD conceived the study. MD supervised the sampling. CH performed lab analysis for the two last years. A-LF conducted analysis and writing and editing the manuscript with help from JA, CP, MD and LB.

Allendorf FW, Phelps SR (1981). Use of allelic frequencies to describe population structure. Can J Fish Aquat Sci 38: 1507–1514.

- Araki H, Waples R, Ardren W, Cooper B, Blouin M (2007). Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. *Mol Ecol* 16: 953–966.
- Ardren W, Kapuscinski A (2003). Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. *Mol Ecol* 12: 35–49.
- Belmar-Lucero S, Wood J, Scott S, Harbicht A, Hutchings J, Fraser D (2012). Concurrent habitat and life history influences on effective/census population size ratios in streamdwelling trout. *Ecol Evol* 2: 562–573.
- Berry O, Kirkwood R (2010). Measuring recruitment in an invasive species to determine eradication potential. J Wildl Management 74: 1661–1670.
- Carrea C (2011). Ecologia, genetica e historia de vida de *Galaxias maculatus* en dos grandes cuencas de Patagonia. PhD dissertation, Universidad Nacional del Comahue, Argentina.
- Castric V, Bernatchez L, Belkhir K, Bonhomme F (2002). Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus Fontinalis Mitchill (Pisces, Salmonidae): a test of alternative hypotheses. *Heredity* 89: 27–35.
- Charlier J, Laikre L, Ryman N (2012). Genetic monitoring reveals temporal stability over 30 years in a small, lake-resident brown trout population. *Heredity* **109**: 246–253.

Chaput G (2012). Overview of the status of Atlantic salmon (Salmo salar) in the North Atlantic and trends in marine mortality. *ICES J Mar Sci* **69** (9): 1538–1548.

Crow JF, Kimura M (1970). An Introduction to Population Genetics Theory. Harper and Row. New-York

- Dalley EL, Andrews CW, Green JM (1983). Precocious male Atlantic salmon parr (Salmo salar) in insular Newfoundland. Can J Fish Aquat Sci 40: 647–652.
- DeFaveri J, Merilä J (2015). Temporal stability of genetic variability and differentiation in the three-spined stickleback (*Gasterosteus aculeatus*). *PLoS One* 10: e0123891.
- Dionne M, Caron F, Dodson J, Bernatchez L (2008). Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. *Mol Ecol* 17: 2382–2396.
- Dionne M, Cauchon V (2014). Écologie et évolution des populations témoins de saumon atlantique au Québec: rapport de recherche 2014. Ministère des Forêts, de la Faune et des Parcs, Direction générale de l'expertise sur la faune et ses habitats, Direction de la faune aquatique, Québec, 86p.
- Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014). NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. *Mol Ecol Resour* 14: 209–214.
- Dowling T, Turner T, Carson E, Saltzgiver M, Adams D, Kesner B et al. (2014). Time-series analysis reveals genetic responses to intensive management of razorback sucker (*Xyrauchen texanus*). Evol Appl **7**: 339–354.
- Duong TY, Scribner KT, Forsythe PS (2013). Interannual variation in effective number of breeders and estimation of effective population size in long-lived iteroparous lake sturgeon (*Acipenser fulvescens*). *Mol Ecol* 22: 1282–1294.
- Excoffier L, Lischer HE (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. *Mol Ecol Resour* 10: 564–567.
- Fleming I (1996). Reproductive strategies of Atlantic salmon: ecology and evolution. Fish Biol Fish 6: 379-416.
- Fleming IA (1998). Pattern and variability in the breeding system of Atlantic salmon (*Salmo salar*), with comparisons to other salmonids. *Can J Fish Aquat Sci* **55**: 59–76.
- Fontaine P-M, Caron F (1999). Re-evaluation of spawner and return salmon numbers in Québec, 1967–1998. Report to the Working Group on North Atlantic Salmon of the International Council for the Exploration of the Sea (ICES). Service de la faune aquatique. Direction générale du patrimoine faunique et naturel. Gouvernement du Québec. Québec, Canada. 14p.
- Frankham R (1995). Effective population size adult size ratios in wildlife a review. *Genetical research* **66**: 95–107.
- Fraser D, Jones M, McParland T, Hutchings J (2007). Loss of historical immigration and the unsuccessful rehabilitation of extirpated salmon populations. *Conserv Genet* 8: 527–546.
- Friedland KD, Reddin DG, McMenemy JR, Drinkwater KF (2003). Multidecadal trends in North American Atlantic salmon (*Salmo salar*) stocks and climate trends relevant to juvenile survival. *Can J Fish Aquat Sci* **60**: 563–583.
- Garant D, Dodson J, Bernatchez L (2001). A genetic evaluation of mating system and determinants of individual reproductive success in Atlantic salmon (*Salmo salar* L.). *J Hered* **92**: 137–145.
- Goudet J (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. *J Hered* **86**: 485–486.
- Grimardias D, Merchermek N, Manicki A, Garnier J, Gaudin P, Jarry M *et al.* (2010). Reproductive success of Atlantic salmon (*Salmo salar*) mature male parr in a small river, the Nivelle: influence of shelters. *Ecol Freshw Fish* **19**: 510–519.
- Hall C, Jordaan A, Frisk M (2012). Centuries of anadromous forage fish loss: consequences for ecosystem connectivity and productivity. *Bioscience* **62**: 723–731.
- Heath D, Busch C, Kelly J, Atagi D (2002). Temporal change in genetic structure and effective population size in steelhead trout (*Oncorhynchus mykiss*). *Mol Ecol* 11: 197–214.
- Hedrick P (2005). A standardized genetic differentiation measure. *Evolution* **59**: 1633–1638.
- Hermansen S, Hansen J, Hutchinson P (2015). Report of the Thirty-Second Annual Meeting of the Council of the North Atlantic Salmon Conservation Organization Hotel North 2, Happy Valley-Goose Bay, Canada.
- Johnstone D, O'Connell M, Palstra F, Ruzzante D (2013). Mature male parr contribution to the effective size of an anadromous Atlantic salmon (*Salmo salar*) population over 30 years. *Mol Ecol* 22: 2394–2407.
- Jones O, Wang J (2010). COLONY: a program for parentage and sibship inference from multilocus genotype data. *Mol Ecol Resour* **10**: 551–555.
- Kalinowski ST, Waples RS (2002). Relationship of effective to census size in fluctuating populations. *Conserv Biol* 16: 129–136.
- Klemetsen A, Amundsen P-A, Dempson JB, Jonsson B, Jonsson N, O'Connel MF *et al.* (2003). Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. *Ecol Freshw Fish* 12: 1–59.
- Legendre P, Legendre L (1998). Numerical Ecology, 2nd English edition. Elsevier Science BV: Amsterdam. 853p.
- Limburg K, Waldman J (2009). Dramatic declines in North Atlantic diadromous fishes. *Bioscience* 63.
- Luikart G, Ryman N, Tallmon DA, Schwartz MK (2010). Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. *Conserv Genet* 11: 355–373.

- Martinez JL, Moran P, Perez J, De Gaudemar B, Beall E, Garcia-Vazquez E (2000). Multiple paternity increases effective size of southern Atlantic salmon populations. *Mol Ecol* 9: 293–298.
- Miller L, Kapuscinski A (1997). Historical analysis of genetic variation reveals low effective population size in a northern pike (*Esox Jucius*) population. *Genetics* 147: 1249–1258.
- Mills K (2013). Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations. *Glob Change Biol* **19**: 3046–3061.
- Moore J, Bourret V, Dionne M, Bradbury I, O'Reilly P, Kent M et al. (2014). Conservation genomics of anadromous Atlantic salmon across its North American range: outlier loci identify the same patterns of population structure as neutral loci. *Mol Ecol* 23: 5680–5697.
- Myers RA, Hutchings JA (1987). Mating of anadromous Atlantic salmon, Salmo salar L., with mature male parr. J Fish Biol 31: 143–146.
- Nieland JL, Sheehan TF, Saunders R (2015). Assessing demographic effects of dams on diadromous fish: a case study for Atlantic salmon in the Penobscot River, Maine. *ICES J Mar Sci* 72: 2423–2437.
- Nunney L (1993). The influence of mating system and overlapping generations on effective population size. *Evolution* **47**: 1329–1341.
- Osborne M, Davenport S, Hoagstrom C, Turner T (2010). Genetic effective size, Ne, tracks density in a small freshwater cyprinid, Pecos bluntnose shiner (*Notropis simus pecosensis*). *Mol Ecol* **19**: 2832–2844.
- Ovenden JR, Peel D, Street R, Courtney AJ, Hoyle SD, Peel SL et al. (2007). The genetic effective and adult census size of an Australian population of tiger prawns (*Penaeus* esculentus). Mol Ecol 16: 127–138.
- Palm S, Laikre L, Jorde P, Ryman N (2003). Effective population size and temporal genetic change in stream resident brown trout (Salmo trutta, L.). Conserv Genet 4: 249–264.
- Palstra F, Ruzzante D (2008). Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? *Mol Ecol* **17**: 3428–3447.
- Palstra F, O'Connell M, Ruzzante D (2009). Age structure, changing demography and effective population size in Atlantic Salmon (Salmo salar). Genetics 182: 1233–1249.
- Palstra F, Fraser D (2012). Effective/census population size ratio estimation: a compendium and appraisal. *Ecol Evol* **2**: 2357–2365.
- Parrish DL, Behnke RJ, Gephard SR, McCormick SD, Reeves GH (1998). Why aren't there more Atlantic salmon (Salmo salar)? Can J Fish Aquat Sci 55: 281–287.
- Peel D, Waples RS, Macbeth GM, Do C, Ovenden JR (2013). Accounting for missing data in the estimation of contemporary genetic effective population size (N(e)). *Mol Ecol Resour* 13: 243–253.
- Perrier C, Guyomard R, Bagliniere J, Nikolic N, Evanno G (2013). Changes in the genetic structure of Atlantic salmon populations over four decades reveal substantial impacts of stocking and potential resiliency. *Ecol Evol* **3**: 2334–2349.
- Perrier C, Normandeau É, Dionne M, Richard A, Bernatchez L (2014). Alternative reproductive tactics increase effective population size and decrease inbreeding in wild Atlantic salmon. *Evol Appl* 7: 1094–1106.
- Perrier C, April J, Cote G, Bernatchez L, Dionne M (2016). Effective number of breeders in relation to census size as management tools for Atlantic salmon conservation in a context of stocked populations. *Cons Genet* 17: 31–44.
- Pinheiro J, Bates D, DebRoy S, Sarkar DR Core Team (2015). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-122. Available at: http://CRAN.R-project. org/package = nlme.
- Piry S, Alapetite A, Cornuet J, Paetkau D, Baudouin L, Estoup A (2004). GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95: 536–539.
- Pray LA, Goodnight CJ, Stevens L, Schwartz JM, Yan G (1996). The effect of population size on effective population size: an empirical study in the red flour beetle *Tribolium castaneum. Genet Res* 68: 151–155.
- Richard A, Dionne M, Wang J, Bernatchez L (2013). Does catch and release affect the mating system and individual reproductive success of wild Atlantic salmon (Salmo salar L.)? Mol Ecol 22: 187–200.
- Rousset F (2008). Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. *Mol Ecol Resour* 8: 103–106.
- Tallmon D, Gregovich D, Waples R, Baker C, Jackson J, Taylor B *et al.* (2010). When are genetic methods useful for estimating contemporary abundance and detecting population trends? *Mol Ecol Resour* 10: 684–692.
- Saura M, Caballero A, Moran P (2008). Impact of precocious male parr on the effective size of a wild population of Atlantic salmon. *Freshw Biol* **53**: 2375–2384.
- Serbezov D, Jorde P, Bernatchez L, Olsen E, Vøllestad L (2012). Life history and demographic determinants of effective/census size ratios as exemplified by brown trout (Salmo trutta). Evol Appl 5: 607–618.
- Shrimpton JM, Heath DD (2003). Census vs. effective population size in chinook salmon: large- and small-scale environmental perturbation effects. *Mol Ecol* 12: 2571–2583.
- Sokal RR, Rohlf FJ (1995). Biometry: The Principles and Practice of Statistics in Biological Research, 4th edn. Freeman & Co: New York. p 887.
- Storz J, Bhat H, Kunz T (2001). Genetic consequences of polygyny and social structure in an Indian fruit bat, *Cynopterus sphinx*. II. Variance in male mating success and effective population size. *Evolution* 55: 1224–1232.
- Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004). MICRO CHECKER: software for identifying and correcting genotyping errors in microsatellite data. *Mol Ecol Notes* 4: 535–538.
- Venables WN, Ripley BD (2002). Modern Applied Statistics with S, 4th edn. Springer: New York.

- Vucetich JA, Waite TA, Nunney L (1997). Fluctuating population size and the ratio of effective to census population size. *Evolution* **51**: 2017–2021.
- Wang J (2009). A new method for estimating effective population sizes from a single sample of multilocus genotypes. *Mol Ecol* 18: 2148–2164.
- Wang J (2016). A comparison of single-sample estimators of effective population sizes from genetic marker data. *Mol Ecol*; e-pub ahead of print 9 July 2016; doi:10.1111/ mec.13725.

Waples R (1989). A generalized approach for estimating effective population size from temporal changes in allele frequency. *Genetics* **121**: 379–391.

Waples RS (1998). Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89: 438–450.

Waples R (2002). Effective size of fluctuating salmon populations. *Genetics* 161: 783–791.
Waples R (2005). Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? *Mol Ecol* 14: 3335–3352.

Waples RS, Do C (2008). LDNE: a program for estimating effective population size from data on linkage disequilibrium. *Mol Ecol Resour* 8: 753–756.

- Waples RS, Punt AE, Cope JM (2008) Integrating genetic data into management of marine resources: how can we do it better? *Fish and Fisheries* **9**: 423–449.
- Waples R, Do C (2010). Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. *Evol Appl* **3**: 244–262.
- Waples RS, Antao T, Luikart G (2014). Effects of overlapping generations on linkage disequilibrium estimates of effective population size. *Genetics* 197: 769–780.
- Watts IC, Saccheri IJ, Kemp SJ, Thompson DJ (2007). Effective population sizes and migration rates in fragmented populations of an endangered insect (*Coenagrion mercuriale*: Odonata). J Anim Ecol **76**: 790–800.

Weir BS (1979). Inferences about linkage disequilibrium. Biometrics 35: 235-254.

- Whiteley A, Coombs J, Cembrola M, O'Donnell M, Hudy M, Nislow K *et al.* (2015). Effective number of breeders provides a link between interannual variation in stream flow and individual reproductive contribution in a stream salmonid. *Mol Ecol* 24: 3585–3602.
- Wright S (1931). Evolution in Mendelian populations. Genetics 16: 97-159.

Supplementary Information accompanies this paper on Heredity website (http://www.nature.com/hdy)